A novel gene (narM) required for expression of nitrate reductase activity in the cyanobacterium Synechococcus elongatus strain PCC7942.

نویسندگان

  • Shin-ichi Maeda
  • Tatsuo Omata
چکیده

A new class of mutants deficient in nitrate assimilation was obtained from the cyanobacterium Synechococcus elongatus strain PCC7942 by means of random insertional mutagenesis. A 0.5-kb genomic region had been replaced by a kanamycin resistance gene cassette in the mutant, resulting in inactivation of two genes, one of which was homologous to the recently characterized cnaT gene of Anabaena sp. strain PCC7120 (J. E. Frías, A. Herrero, and E. Flores, J. Bacteriol. 185:5037-5044, 2003). While insertional mutation of the cnaT homolog did not affect expression of the nitrate assimilation operon or the activity of the nitrate assimilation enzymes in S. elongatus, inactivation of the other gene, designated narM, resulted in specific loss of the cellular nitrate reductase activity. The deduced NarM protein is a hydrophilic protein consisting of 161 amino acids. narM was expressed constitutively at a low level. The narM gene has its homolog only in the cyanobacterial strains that are capable of nitrate assimilation. In most of the cyanobacterial strains, narM is located downstream of narB, the structural gene of the cyanobacterial nitrate reductase, suggesting the functional link between the two genes. NarM is clearly not the structural component of the cyanobacterial nitrate reductase. The narM insertional mutant normally expressed narB, indicating that narM is not the transcriptional regulator of the structural gene of nitrate reductase. These results suggested that narM is required for either synthesis of the prosthetic group of nitrate reductase or assembly of the prosthetic groups to the NarB polypeptide to form functional nitrate reductase in cyanobacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803.

Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite ...

متن کامل

Using a Microfluidic Gradient Generator to Characterize BG-11 Medium for the Growth of Cyanobacteria Synechococcus elongatus PCC7942

The photosynthetic cyanobacterium Synechococcus elongatus PCC7942 has recently gained great attention for its ability to directly convert CO2 into renewable chemicals upon genetic engineering. Thus, it is of great interest to increase the growth speed and lower the medium requirement for cultivating this cyanobacterium. The cultivation medium of Synechococcus elongatus PCC7942 has been develope...

متن کامل

Characterization of the nitrate-nitrite transporter of the major facilitator superfamily (the nrtP gene product) from the cyanobacterium Nostoc punctiforme strain ATCC 29133.

The products of the NpR1527 and NpR1526 genes of the filamentous, diazotrophic, fresh-water cyanobacterium Nostoc punctiforme strain ATCC 29133 were identified as a nitrate transporter (NRT) and nitrate reductase (NR) respectively, by complementation of nitrate assimilation mutants of the cyanobacterium Synechococcus elongatus strain PCC 7942. While other fresh-water cyanobacteria, including S....

متن کامل

Functional Characterization of the FNT Family Nitrite Transporter of Marine Picocyanobacteria

Many of the cyanobacterial species found in marine and saline environments have a gene encoding a putative nitrite transporter of the formate/nitrite transporter (FNT) family. The presumed function of the gene (designated nitM) was confirmed by functional expression of the gene from the coastal marine species Synechococcus sp. strain PCC7002 in the nitrite-transport-less mutant (NA4) of the fre...

متن کامل

Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

UNLABELLED Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 7  شماره 

صفحات  -

تاریخ انتشار 2004